You are here
Jeremy M. Baskin
Assistant Professor
Overview
My research interests center on pioneering innovative chemical approaches to probe the cell biology of diverse classes of lipids, with a major focus on developing new molecular imaging methods.
Keywords
Biochemistry, Cell Biology, Chemical Biology, Imaging Probes, Lipids and Membranes
Departments/Programs
- Chemistry and Chemical Biology
Graduate Fields
- Chemistry and Chemical Biology
- Biochemistry, Molecular and Cell Biology
Affiliations
- Weill Institute for Cell and Molecular Biology
Research
Lipids are a diverse group of metabolites that function as energy stores, components of membranes, and signaling molecules, and dysregulation of lipid metabolism occurs in many diseases. While lipids have been traditionally studied using in vitro or genetic techniques, chemical biology approaches can enable the rapid and precise interrogation of lipid biology within living systems. Research in my laboratory centers on the chemical biology and cell biology of lipids and biological membranes. Our work encompasses both methodology development and hypothesis-driven, mechanistic research aimed at shedding light on how lipid properties such as structure and subcellular location impact biological function. Using cross-disciplinary approaches, we are focused on elucidating signaling functions of lipid second messengers including phosphatidic acid and phosphoinositides. A vital part of my research program involves development of innovative chemical imaging tools to monitor these individual lipid species, notably a technique for imaging phosphatidic acid production by phospholipase D enzymes termed IMPACT. Separately, we are revealing new roles for phosphoinositides in the regulation of ubiquitination and Wnt signaling through our studies of a new family of lipid-binding proteins. Knowledge obtained from our foundational studies and initial applications of our tools has inspired novel directions of inquiry into fundamental biological mechanisms and those relevant to several human diseases, including multiple sclerosis and several cancers.
Courses
Spring 2021
Publications
Baskin Lab Publications at Cornell:
Research Papers
- Jorgensen JR, Tei R, Baskin JM, Michel AH, Kornmann B, Emr SD. “ESCRT-III and ER-PM Contacts Maintain Lipid Homeostasis.” Mol Biol Cell (2020) 31, 12, 1302–13.
- Tei R and Baskin JM. “Spatiotemporal Control of Phosphatidic Acid Signaling with Optogenetic, Engineered Phospholipase Ds.” J Cell Biol (2020) 219, 3, e201907013.
- Daughtry JL, Cao W, Ye J, and Baskin JM. “Clickable Galactose Analogs for Imaging Glycans in Developing Zebrafish.” ACS Chem Biol (2020) 15, 4, 318–24; also at ChemRxiv (2019).
- Liang D, Wu K*, Tei R*, Bumpus TW, Ye J, and Baskin JM. “A real-time, click chemistry imaging approach reveals stimulus-specific subcellular locations of phospholipase D activity.” Proc Natl Acad Sci USA (2019) 116, 31, 15453–62.
- Shami Shah A, Batrouni AG, Kim D, Punyala A, Cao W, Han ML, Smolka MB, and Baskin JM. “PLEKHA4/kramer attenuates Dishevelled ubiquitination to modulate Wnt and planar cell polarity signaling.” Cell Rep (2019) 27, 2157–70.
- Wang DG, Paddock MN, Lundquist MR, Sun JY, Mashadova O, Amadiume S, Bumpus TW, Hodakoski C, Hopkins BD, Fine M, Hill A, Yang TJ, Baskin JM, Dow LE, and Cantley LC. “PIP4Ks suppress insulin signaling through a catalytic-independent mechanism.” Cell Rep (2019) 27, 1991–2001.
- Bumpus TW, Liang FJ, and Baskin JM. “Ex Uno Plura: Differential labeling of phospholipid biosynthetic pathways with a single bioorthogonal alcohol.” Biochemistry (2018) 57, 2, 226-230.
- Bumpus TW and Baskin JM. “Clickable Substrate Mimics Enable Imaging of Phospholipase D Activity.” ACS Cent Sci (2017) 3, 10, 1070-1077.
- Knopf KM, Murphy BL, MacMillan SN, Baskin JM, Barr MP, Boros E, and Wilson JJ. “In Vitro Anticancer Activity and in Vivo Biodistribution of Rhenium(I) Tricarbonyl Aqua Complexes.” J Am Chem Soc (2017) 139, 40, 14302-14314.
- Bumpus TW and Baskin JM. “A Chemoenzymatic Strategy for Imaging Cellular Phosphatidic Acid Synthesis.” Angew Chem Int Ed (2016) 55, 13155-13158.
Review Articles
- Flores J*, White BM*, Brea RJ, Baskin JM†, Devaraj NK†. "Lipids: chemical tools for their synthesis, modification, and analysis." Chem Soc Rev (2020) Advance article.
- Bumpus TW*, Liang D*, and Baskin JM. “IMPACT: Imaging phospholipase D activity with clickable alcohols via transphosphatidylation.” Method Enzymol (2020) in press.
- Bumpus TW and Baskin JM. “Getting a grip on greasy molecules.” Trends Biochem Sci (2019) 44, 7, 640–41.
- Bumpus TW and Baskin JM. “Greasing the wheels of lipid biology with chemical tools.” Trends Biochem Sci (2018) 43, 970–83.
Patents
- Baskin JM, Bumpus TW. “Methods for detection and imaging of cellular phospholipase D activity”. US Patent Application US20190085373A1 (Sept 14, 2018).
Selected Papers, Reviews, and Patents from Graduate & Postdoctoral Work:
- *Baskin JM, *Wu X, Christiano R, Oh M, Schauder CM, Gazzerro E, Messa M, Baldassari S, Assereto S, Biancheri R, Zara F, Minetti C, Raimondi A, Simons M, Walther TC, Reinisch KM, De Camilli P. “The leukodystrophy protein FAM126A/Hyccin regulates PI4P synthesis at the plasma membrane.” Nat Cell Biol, 18, 132–38 (2016).
- Nakatsu F*, Baskin, JM*, Chung J, Tanner LB, Shui G, Lee SY, Pirruccello M, Hao M, Ingolia NT, Wenk MR, De Camilli P. (2012) “PtdIns4P synthesis by PI4KIIIα at the plasma membrane and its impact on plasma membrane identity.” J Cell Biol, 199, 1003–16 (2012).
- Baskin JM*, Dehnert KW*, Laughlin ST*, Amacher SL, Bertozzi CR. (2010) “Visualizing enveloping layer glycans during zebrafish early embryogenesis.” Proc Natl Acad Sci USA, 107, 10360–65 (2010).
- Laughlin ST*, Baskin JM*, Amacher SL, Bertozzi CR. “In vivo imaging of membrane-associated glycans in developing zebrafish.” Science, 320, 664–67 (2008).
- Codelli JA, Baskin JM, Agard NJ, Bertozzi CR. “Second-generation difluorinated cyclooctynes for copper-free click chemistry.” J Am Chem Soc, 130, 11486–93 (2008).
- Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR. “Copper-free click chemistry for dynamic in vivo imaging.” Proc Natl Acad Sci USA, 104, 16793–97 (2007).
- Agard NJ*, Baskin JM*, Prescher JA, Lo A, Bertozzi CR. “A comparative study of bioorthogonal reactions with azides.” ACS Chem Biol, 1, 644–48 (2006).
- Baskin JM and Bertozzi CR. “Copper-free click chemistry: Bioorthogonal reagents for tagging azides.” Aldrichimica Acta, 43, 15–23 (2010).
- Baskin JM and Bertozzi CR. “Bioorthogonal click chemistry: Covalent labeling in living systems.” QSAR Comb Sci, 26, 1211–19 (2007).
- Baskin JM and Bertozzi CR. “Copper-free click chemistry.” In Click Chemistry for Biotechnology and Materials Science. Ed. J. Lahann. pp. 25–51, Wiley (2009).
- Bertozzi CR, Agard NJ, Prescher JA, Baskin JM, Sletten EM. “Compositions and methods for modification of biomolecules.” US Patent Nos. 7,807,619 (Oct 5, 2010), 8,461,298 (Apr 30, 2013), and 8,461,298 (Jun 11, 2013).