Skip directly to main navigation | secondary navigation | main content

Department of Chemistry and Chemical Biology

conrell logo
PC PBBA cof six by six

Faculty Detail


Park, Jiwoong

Associate Professor

email:
phone: 607/254-3339
room: PHYSICAL SCIENCES BUILDING, Room 297

Websites

Department Appointments

  • Chemistry and Chemical Biology (CHEM)

Graduate Fields

  • Applied Physics
  • Chemistry and Chemical Biology

Other Affiliations

  • CCMR Shared Facilities
  • Center for Nanoscale Systems (CNS)
  • Kavli Institute at Cornell for NanoScale Science

Keywords

Synthesis and characterization of carbon nanostructures, nanomaterials-based technology

Overview

Prof. Park studies the science and application of molecule-like nanostructures, including carbon nanotubes and graphene. His group combines novel materials synthesis with state-of-the-art characterization methods in order to fully control the chemical and physical properties of nanoscale materials. PhD - UC Berkeley (2003), BS - Seoul Nat'l Univ (1996)

Research

As the silicon based devices approach their fundamental size limits, the world is turning to nanoscale science to continue the modern electronics evolution. One of the most impressive results of this effort is the development of devices based on nanoscale materials, which often exhibit excellent characteristics that are comparable, and in some cases even superior, to the properties of traditional semiconductors.

Our group's main research interest is to explore fundamental physics and chemistry in the nanometer scale by investigating electrical, optical and thermal properties of individual nanostructures, including single molecules, nanocrystals, nanowires, carbon nanotubes, and their arrays. In particular, we are most interested in studying how fundamental physical quanta ? electrons, photons and phonons are coupled to each other in the nanometer scale and how we can apply this knowledge for future technological advances.

This research field is multidisciplinary in nature; exploring physical properties of individual structures involves addressing key scientific issues regarding: 1) smarter materials synthesis and device design, 2) advanced nanoscale characterization of electrical and optical properties, and 3) rational strategy for integration with the external measurements setup. The mastery of these issues is essential not only to create novel electronic and optical devices, but it also has the potential to impact other major disciplines including materials science, physical sciences, electrical engineering and bioengineering.

Selected Publications

• M. W. Graham, S. Shi, D. C. Ralph, J. Park and P. L. McEuen, "Photocurrent Measurements of Supercollision Cooling in Graphene," Nature Physics 9, 103-108 (2013).

• M. P. Levendorf, C.-J. Kim, L. Brown, P. Y. Huang, R. W. Havener, D. A. Muller, and J. Park, "Graphene and Boron Nitride Lateral Heterostructures for Atomically Thin Circuitry," Nature 488, 627-632 (2012).

• A. W. Tsen, L. Brown, M. P. Levendorf, F. Ghahari, P. Y. Huang, C. S. Ruiz-Vargas, R. W. Havener, D. A. Muller, P. Kim, and J. Park, "Tailoring Electrical Transport across Grain Boundaries in Polycrystalline Graphene," Science 336, 1143-1146 (2012).

• R. W. Havener, H. Zhuang, L. Brown, R. Hennig, and J. Park, “Angle-Resolved Raman Imaging of Interlayer Rotations and Interactions in Twisted Bilayer Graphene” Nano Letters 12, 3262-3167 (2012).

• L. Brown, R. Hovden, P. Huang, M. Wojick, D. A. Muller, and J. Park, "Twinning and Twisting of Tri- and Bi-layer Graphene", Nano Letters 12, 1609-1615 (2012).

• J. W. Colson, A. R. Woll, A. Mukherjee, M. P. Levendorf, E. L. Spitler, V. B. Shields, M. G. Spencer, J. Park, and W. R. Dichtel, "Oriented 2D Covalent Organic Framework Thin Films on Single Layer Graphene," Science 332, 228-231 (2011).

• P. Y. Huang, C. S. Ruiz-Vargas, A. M. van der Zande, W. S. Whitney,  M. P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, J. Park, P. L. McEuen, D. A. Muller, “Grains and Grain Boundaries in Single-Layer Graphene Atomic Patchwork Quilts,” Nature 469, 389-392 (2011).

• D. Y. Joh, J. Kinder, L. H. Herman, S.-Y. Ju, M. A. Segal, J. N. Johnson, G. K. L. Chan, J. Park, “Single walled carbon nanotubes as excitonic optical wires”, Nature Nanotechnology 6, 51-56 (2011).

• D. Y. Joh, L. H. Herman, S.-Y. Ju, J. Kinder, M. A. Segal, J. N. Johnson, G. K. L. Chan, J. Park, “On-chip Rayleigh imaging and spectroscopy of carbon nanotubes”, Nano Letters 11, 1-7. (2011cover article)

• M.P. Levendorf, C. Ruiz-Vargas, S. Garg, and J. Park, “Transfer-Free Batch Fabrication of Single Layer Graphene Transistors”, Nano Letters 9, 4479-4483 (2009).

N. M. Gabor, Z. Zhong, K. Bosnick, J. Park, and P. L. McEuen. “Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes”, Science 325, 1367-1371 (2009).

J. Park, Y.H. Ahn, C. Ruiz-Vargas. “Imaging of Photocurrent Generation and Collection in Single Layer Graphene”, Nano Letters 9, 1742-1746 (2009).

W. Tsen, L.A.K. Donev, H. Kurt, L.H. Herman, J. Park “Imaging electrical conductance of individual carbon nanotubes with photothermal current microscopy”, Nature Nanotechnology 4, 108-113 (2009).

Awards and Distinctions

  • 2010 Sloan Research Fellowship
  • 2009 Presidential Early Career Award for Scientists and EngineersĀ 
  • 2008 NSF CAREER Award
  • 2003-2006 Rowland Junior Fellow, Harvard University